The emerging role of group VI calcium-independent phospholipase A2 in releasing docosahexaenoic acid from brain phospholipids.
نویسندگان
چکیده
Brain phospholipids are highly enriched in docosahexaenoic acid (DHA; 22:6n-3). Recent advances indicate that 22:6n-3 is released from brain phospholipids via the action of phospholipase A2 (PLA2) in response to several stimuli, including neurotransmission, where it then acts as a secondary messenger. Furthermore, it is now known that released 22:6n-3 is a substrate for several oxygenation enzymes whose products are potent signaling molecules. One emerging candidate PLA2 involved in the release of 22:6n-3 from brain phospholipids is the group VI calcium-independent phospholipase A2 (iPLA2). After a brief review of brain 22:6n-3 metabolism, cell culture and rodent studies facilitating the hypothesis that group VI iPLA2 releases 22:6n-3 from brain phospholipids are discussed. The identification of PLA2s involved in cleaving 22:6n-3 from brain phospholipids could lead to the development of novel therapeutics for brain disorders in which 22:6n-3 signaling is disordered.
منابع مشابه
The Journal of Nutrition Symposium: Dietary PUFA and the Aging Brain—Food for Thought Arachidonic Acid and the Brain
Kinetic methods in unanesthetized rodents have shown that turnover rates of arachidonic acid (AA) and docosahexaenoic acid (DHA) in brain membrane phospholipids are rapid and energy consuming and that phospholipase A2 (PLA2) and acyl-CoA synthetase enzymes that regulate turnover are specific for one or the other PUFA. Thus, AA turnover in brain phospholipids was reduced, and AA-selective cytoso...
متن کاملNeuroaxonal dystrophy in calcium-independent phospholipase A2β deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes.
Infantile neuroaxonal dystrophy (INAD) is a fatal neurodegenerative disease characterized by the widespread presence of axonal swellings (spheroids) in the CNS and PNS and is caused by gene abnormality in PLA2G6 [calcium-independent phospholipase A(2)β (iPLA(2)β)], which is essential for remodeling of membrane phospholipids. To clarify the pathomechanism of INAD, we pathologically analyzed the ...
متن کاملMembrane Allostery and Unique Hydrophobic Sites Promote Enzyme Substrate Specificity
We demonstrate that lipidomics coupled with molecular dynamics reveal unique phospholipase A2 specificity toward membrane phospholipid substrates. We discovered unexpected headgroup and acyl-chain specificity for three major human phospholipases A2. The differences between each enzyme's specificity, coupled with molecular dynamics-based structural and binding studies, revealed unique binding si...
متن کاملFunction and inhibition of intracellular calcium-independent phospholipase A2.
Our previous Minireview (1) considered the three main kinds of phospholipase A2 (PLA2) : the well characterized Groups I, II, and III small Ca-dependent secretory phospholipase A2s (sPLA2), the 85-kDa Group IV Ca -dependent cytosolic phospholipase A2 (cPLA2), and the 80-kDa Ca -independent cytosolic phospholipase A2 (iPLA2). In the ensuing years, it has become clear that PLA2 represents a growi...
متن کاملGroup-specific assays that distinguish between the four major types of mammalian phospholipase A2.
Phospholipase A2 (PLA2) constitutes a diverse superfamily of enzymes which catalyze the deacylation of phospholipids. At least four types of PLA2 are potentially involved in arachidonic acid release in cells and tissues. Since all of them catalyze the same enzymatic reaction, it is difficult to distinguish between them in mixtures of enzymes normally present in biological samples. Utilizing spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 49 5 شماره
صفحات -
تاریخ انتشار 2008